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Abstract. We solve the superradiant laser model in two limiting cases. First the stationary low-pumping
regime is considered where a first-order phase transition in the semiclassical solution occurs. This discon-
tinuity is smeared out in the quantum regime. Second, we solve the model in the non-stationary regime
where we find a temporally periodic solution. For a certain parameter range well-separated pulses may
occur.

PACS. 42.50.-p Quantum optics – 42.50.Fx Cooperative phenomena; superradiance and superfluorescence
– 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

1 introduction

Superfluorescent pulses can be produced by N collectively
radiating identical atoms [1–3] as these atoms decay from
an initially excited state to the ground state. In contrast
to such transient behavior would be the stationary out-
put of the superradiant laser discussed in [4–6]. Collective
behavior would be manifested in the proportionality of
the output intensity to N2 and of the linewidth to N−2.
Moreover, as was shown in [4,5] such a laser could dis-
play nearly perfect squeezing of the intensity fluctuations.
The theory of a superradiant laser has up to now only
been considered semiclassically in the stationary regime.
As we shall show in the present paper, the semiclassical
solution needs some quantum mechanical corrections for a
finite number of atoms and low pumping amplitudes. We
also propose to extend previous investigations towards a
regime not allowing for a time independent stationary so-
lution.

As in references [4,5] we consider the simplest model
of a superradiant laser which accounts for N three-level
atoms placed inside a resonator, Figure 1. We assume a
resonant coherent two-photon pump process 0 → 2. The
two transitions 2 → 1 and 1 → 0 are coupled to two
resonant cavity modes a, b, which are assumed to be so
strongly damped that they are kept in adiabatic slavery
by the atoms.

The atoms are described by the collective popula-
tion (i = j) and polarization (i 6= j) operators Sij =∑N
µ=1 S

µ
ij =

∑
µ(|i 〉〈 j|)µ. We shall represent these atomic

observables by creation and annihilation operators z†i , zi
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Fig. 1. Scheme of the 3-level superradiant laser.

with Sij = z†i zj and [zi, z
†
j ] = δij ; the two modes will be

described by photon annihilation and creation operators
a, b, a†, b†. The Hamiltonian H0 for atoms and field modes
reads

H0 = −i~g12(az†2z1 − a
†z†1z2) + i~g01(bz†1z0 − b

†z†0z1)

+ i~Ω(z†2z0 − z
†
0z2). (1)

Here Ω is the amplitude of the external classical pump
field, g12 and g01 are the atom-field coupling constants
for the transition 2 ↔ 1 and 1 ↔ 0, respectively. As the
modes are damped we have to add the two irreversible
time rates of change for the mode amplitudes a, b(

∂a

∂t

)
irr

= −κaa(t) +
√

2κaηa(t), (2)

(
∂b

∂t

)
irr

= −κbb(t) +
√

2κbηb(t), (3)
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where κa, κb are the two damping constants and
ηa(t), ηb(t) the corresponding quantum Langevin forces.
The latter forces ensure the preservation of the Bose com-
mutators [a(t), a†(t)] = [b(t), b†(t)] = 1. The Heisenberg-
Langevin equations for the system with cavity damping
are now

˙
z†1 = −g12az

†
2 + g01b

†z†0, (4)

˙
z†0 = −Ωz†2 − g01bz

†
1, (5)

˙
z†2 = Ωz†0 + g12a

†z†1, (6)

ȧ = −g12z
†
1z2 − κaa+

√
2κaηa, (7)

ḃ = −g01z
†
0z1 − κbb+

√
2κbηb. (8)

These equations have been solved before in [5] under some
assumptions that we shortly recapitulate here. First the b-
mode is taken to be strongly damped so it can be adiabat-
ically eliminated. For later use we define the two damping
constants γa, γb:

γa =
g2

12

κa
, γb =

g2
01

κb
· (9)

Then an analytic solution can be given in the semiclassical
limit N � 1 in which the observables are represented as a
sum X = X̄+δX of a dominant classical term X̄ ∼ N and
a “small” operator valued fluctuation δX. The classical
term is evaluated in the stationary regime by dropping Ẋ
and the Langevin forces. The resulting solutions can be
expressed in terms of a dimensionless coupling strength c
and an effective pump strength p:

c =
γa

γb
, p =

Ω

N
√
cγb
· (10)

The solution for the level populations and the field ampli-
tude is

S̄00 =
Nc(1− p)

1 + c
, S̄11 = Np,

S̄22 =
N(1− p)

1 + c
, ā =

Nγb

g12

c
√
p(1− p)
√

1 + c
, (11)

which is stable under the constraints 0 ≤ p ≤ 1 and c > 1
in the case we are interested in (additional adiabatic elim-
ination of the a-mode). Notice that for p → 0 and p → 1
some of the observables vanish. This is in conflict to the as-
sumption of a large mean value and small fluctuations, so
the semiclassical approximation will break down at these
points. Moreover, this solution cannot be correct in the
limit p → 0 since it does not correspond to the ground
state 〈S00〉 = N . It is physically clear, however, that with-
out pumping all atoms will eventually settle in the lowest
state, due to damping of the levels 2 and 1. To improve
on the semiclassical prediction of a discontinuity of 〈S22〉
for p = 0 we have to consider the full quantum mechanical
solution. This will be done in two ways. First, we develop
a perturbative small-p expansion. Second, we give a recur-
rence relation for the whole stationary density operator ρ
which can be evaluated numerically.

In the final section of this paper we shall take a look
at the regime where (11) is not a stable solution anymore.

2 First-order phase transition
in the stationary regime

For the discussion of the quantum mechanical solution
we will switch to the master equation of the superradiant
laser. Additionally we assume the a-mode also to be so
strongly damped that we can eliminate it adiabatically.
The master equation then reads

ρ̇ = (L02 + L21 + L10)ρ (12)

with

L02ρ = Ω[S02 − S20, ρ], (13)

L21ρ = γa{[S12, ρS21] + [S12ρ, S21]}, (14)

L10ρ = γb{[S01, ρS10] + [S01ρ, S10]}. (15)

For the discussion we expand ρ in the fully symmetric and
normalized states |1m; 2l〉 with l atoms in level 2, m atoms
in level 1, and N −m− l atoms in level 0. The short-hand
notation |0〉 ≡ |10; 20〉 is used for the ground state.

2.1 Second-order perturbation expansion

In this section we take a closer look at the neighborhood of
the point p = 0. For zero pumping the atoms will eventu-
ally all settle in the ground state, so the stationary density
operator is ρ̄(p = 0) = |0〉〈0|. For small non-zero pumping
ρ̄ may be expanded in a series

ρ̄ = ρ(0) + ρ(1) + ρ(2) + ... (16)

where ρ(n) ∝ pn. With λ ≡ L21 + L10 the terms up to
second order are

ρ(0) = |0 〉〈 0|, (17)

ρ(1) = lim
t→∞

t∫
0

dt1e
λ(t−t1)L02e

λt1 |0 〉〈 0|

= −
pN3/2

√
c

(|21 〉〈 0|+ |0 〉〈 21|), (18)

ρ(2) = lim
t→∞

t∫
0

dt1e
λ(t−t1)

t1∫
0

dt2

×L02e
λ(t1−t2)L02e

λt2 |0 〉〈 0|

=

(
1− p2N2N + c

c

)
|0 〉〈 0|

+
p2N3

c
|21 〉〈 21| + p2N2|11 〉〈 11|

+
p2N3

c

√
N − 1

2N

(
|22 〉〈 0|+ |0 〉〈 22|

)
. (19)
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0 = pN
√
c
{√

(N −m− l + 1)lρ̄l−1,m,r −
√

(N −m− l)(l + 1)ρ̄l+1,m,r +
√

(N −m− r + 1)rρ̄l,m,r−1

−
√

(N −m− r)(r + 1)ρ̄l,m,r+1

}
+ c

{
2m
√

(r + 1)(l + 1)ρ̄l+1,m−1,r+1 − (m+ 1)(l + 1)ρ̄l,m,r
}

+ 2(m+ 1)
√

(N −m− l)(N −m− r)ρ̄l,m+1,r −m(2N − 2m+ 2− l − r)ρ̄l,m,r (24)

These entail the mean occupation numbers

〈S00〉 = N − p2N2N + c

c
+O(p3), (20)

〈S11〉 = p2N2 +O(p3), (21)

〈S22〉 =
p2N3

c
+O(p3). (22)

Starting from the ground state the corrections are propor-
tional to p2 and 〈S22〉 is of order N (as the semiclassical
solution) for p = 1/N . Thus the discontinuity of the semi-
classical solution is smeared out over a range 0 ≤ p ≤ 1/N .
Further calculations show that the fluctuations of the ob-
servables vanish for p → 0. All of this is reminiscent of a
first-order phase transition.

2.2 Recurrence relation

Having studied the perturbation expansion we now pre-
pare to look for a complete quantum mechanical descrip-
tion. To that end we again expand the density operator
ρ in the states |1m; 2l〉 introduced above. One may check
that coherences with respect to different numbers of atoms
in level 1 decay to zero. We take this into account by the
simple ansatz

ρ̄ =
∑

0≤m+r≤N
0≤m+l≤N

ρ̄l,m,r|1
m; 2l 〉 〈 1m; 2r|. (23)

This expansion is inserted into (12) and we find a recur-
rence relation for the stationary solution ρ̄l,m,r

see equation (24) above.

We have not managed to find an analytical solution to
this equation, but have solved it numerically. Since the
number of involved variables is roughly proportional to
N3, only up to 30 atoms have been considered. The results
are shown in Figure 2. Beside the corrections at p = 0
one can make out that the semiclassical solution has to
be corrected for p → 1 as well, as explained above. In
the intermediate p range the semiclassical result is quite
good, even for the moderate values of N studied. Since
the transition from quantum to semiclassical behavior can
already be seen in our calculations, it seems not necessary
to go to higher N .

3 Non-stationary regime

In this section we consider the non-stationary solution of
our system in the bad-cavity limit. As indicated in [6] we

expect to find a temporally periodic behavior of the laser
field. So we set c < 1, where the semiclassical station-
ary solution is not stable. Starting from the Heisenberg-
Langevin equations (4–8), we assume strong, saturated
driving between levels 0 and 2,

z2 =
√
N sin(Ωt), (25)

z0 =
√
N cos(Ωt). (26)

With the assumption of very fast relaxing cavity modes
we can once more eliminate a and b adiabatically,

a(t) = −
g12

√
N

κa
sin(Ωt)z†1 +

√
2

κa
ηa(t), (27)

b†(t) = −
g01

√
N

κb
sin(Ωt)z†1 +

√
2

κb
η†b(t), (28)

and find a linear equation for z†1

˙
z†1 =

[
Γa − Γb

2
−
Γa + Γb

2
cos(2Ωt)

]
z†1 +A(t), (29)

Γa =
g2

12N

κa
, Γb =

g2
01N

κb
, (30)

A(t) =−
√

2Γa sin(Ωt)ηa(t)+
√

2Γb cos(Ωt)η†b(t). (31)

Now equation (29) is easily solved

z†1(t) = eu(t)z†1(0) + eu(t)

t∫
0

e−u(t′)A(t′)dt′ (32)

with

u(t) =
Γa − Γb

2
t−

Γa + Γb

4Ω
sin(2Ωt). (33)

Clearly we encounter a periodic behavior with period
1/2Ω. We use this as time scale and define the dimen-
sionless parameters s, d, and τ

s =
Γb + Γa

2Ω
=

1 + c

2p
√
c
, (34)

d =
Γb − Γa

2Ω
=

1− c

2p
√
c
, (35)

τ = 2Ωt. (36)
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Fig. 2. Occupation numbers of the three levels derived through the recurrence relation. Even for our moderate number of atoms
one can clearly see the transition from the quantum to the semiclassical regime. The discontinuity of 〈S22〉 for p → 0 in the
semiclassical solution is smeared out over a range 1/N .

From this the mean number of photons in the a-mode is〈
a†(t)a(t)

〉
=
ΓaΓb

κaΩ
sin2(τ/2)e−dτ−s sin(τ)

×

τ∫
0

cos2(τ ′/2)edτ
′+s sin(τ ′)dτ ′

≡
ΓaΓb

κaΩ
Int(τ). (37)

The time integration may be performed after expansion
in terms of the Bessel functions In(s),

es sin(τ) =
+∞∑

n=−∞

(−i)nIn(s)einτ , (38)

and after the death of initial transients e−dτ → 0 we get

Int(τ) →
1

2
sin2(τ/2)e−s sin(τ)

×
+∞∑

n=−∞

einτ

d+ in
(−i)nIn(s)

(
1 + i

n

s

)
. (39)

To illustrate the temporal periodicity of this solution we
give some examples for various parameters p, c in Figure 3.
For the limiting case s � 1, which implies small p, we
find well-separated pulses the width and height of which
may be estimated in a Gaussian approximation. With the
parameter ε = d/s we find

Int(τ) =
1

4

1

s2p2

√
2πp e[2/p−d(τmax−τmin)]

×e−(τ−τmax)2/2p (40)
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Fig. 3. The non-stationary pulsed solution for different pa-
rameters. As indicated by the calculations the pulse width is
given by

√
p and is independent of c.

with

cos(τmax) = −ε, sin(τmax) = −
√

1− ε2, (41)

cos(τmin) = −ε, sin(τmin) = +
√

1− ε2. (42)
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S(ω) →
ΓaΓb
16Ω3

∑
n

∑
l

(−1)nIn(s)
(
1 + in

s

)
d+ in

[
In+l+1

( s
2

)
− iIn+l

( s
2

)] [
Il+1

( s
2

)
+ iIl

( s
2

)]
×

[
1

d+ i(2n+ 2l + 1 + ω/Ω)
+

1

d+ i(2n+ 2l + 1− ω/Ω)

]
(45)
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Fig. 4. Spectra of the pulsed solution for different parameters.
As one expects the narrow pulse (p = 0.1) has higher harmonics
than the broad pulse (p = 2).

So the pulse width is

σ =
√
p =

√
Ω
√
κaκb

Ng12g01
· (43)

Due to the assumptions of saturated driving and strongly
damped cavity modes we have Ω � g12, g01, κa � g12,
and κb � g01. This entails the need for a large number
of atoms to make σ small, i.e. to get narrow and well-
separated pulses.

The time-dependent spectrum of a light signal which
accounts for the width of the filter Γ is given as [7]:

SΓ (ω, t) =

t∫
0

dt1

t∫
0

dt2e
−Γ (2t−t1−t2)eiω(t1−t2)

×〈a†(t1)a(t2)〉. (44)

Since we have explicit expressions for the a, a† operators,

we plug them in and after some integrations sending the
width of the filter Γ → 0 and the observation time t→∞
we get the following time-averaged expression

see equation (45) above.

We have used the same parameters p, c as in Figure 3 to
illustrate the spectra of some of these pulses in Figure 4.
Of course high harmonics of the Rabi frequency Ω are
enhanced for σ → 0.
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